The Design of Radiofrequency (RF) Structures in Additive Manufacturing

Mark Mirotznik, Ph.D.
Professor of Electrical and Computer Engineering, The University of Delaware
Design of Radio Frequency Systems and Sensors for Multi-Material Additive Manufacturing

Mark Mirotznik, Zachary Larimore, Paul Parsons, Austin Good, Nick Hudak and Benjamin Garrett and LJ Holmes
Outline

Design of Radio Frequency Systems and Sensors for Multi-Material Additive Manufacturing

- Brief overview of what we are trying to do and why
- Discuss some of the major design challenges we face in this application area
- Provide a more detailed illustrative example
Our Goal

End-to-End AM Design and Fabrication of High Frequency Electronic Systems

Antennas

Integration of passive and active integrated circuits —

Connectors

Transmission lines
Application Space

Small Volume – Labor Intensive Parts or Systems

https://www.nature.com/articles/s41598-017-01276-4
Application Space

Parts that Cannot be Produced Through Other Means

Examples

- Spatially graded material properties
- Complex 3D geometries
- Conformal devices
Managing Expectations

What Most People Want

What Most People End Up With

The state of the art is somewhere in between

http://papaya3dp.com/?r=app&s=18
Outline

Design of Radio Frequency Systems and Sensors for Multi-Material Additive Manufacturing

- Brief overview of what we are trying to do and why
- Discuss some of the major design challenges we face in this application area
- Provide a more detailed illustrative example
Design Considerations for AM of High Frequency Electronic Systems

While still important structural properties are not as important as other design considerations for our applications ...

Such as:

- Ability to print considerably different materials without registration errors (i.e. single multimaterial printer is ideal)
- Materials with electric and magnetic properties that can match standard technologies (e.g. lithographic methods).
- Materials that handle potentially large temperature gradients (e.g. microprocessors and amplifiers get hot!) or design and implement thermal management solutions.
- Ability to place and electrically bond chip level integrated circuits (we still can’t print these)
- Ability to print at vastly different length scales (i.e. size matters a lot!).
Design Considerations for AM of High Frequency Electronic Systems

While still important structural properties are not as important as other design considerations for our applications ...

Such as:

- Ability to print considerably different materials without registration errors (i.e. single multimaterial printer is ideal)
- Materials with electric and magnetic properties that can match material used in standard technologies (e.g. lithographic methods).
- Materials that handle potentially large temperature gradients (e.g. microprocessors and amplifiers get hot!) or design and implement thermal management solutions.
- Ability to place and electrically bond chip level integrated circuits (we still can’t print these)
- Ability to print at vastly different length scales (i.e. size matters a lot!).
Design Considerations for AM of High Frequency Electronic Systems

While still important structural properties are not as important as other design considerations for our applications ...

Such as:

- Ability to print considerably different materials without registration errors (i.e. single multimaterial printer is ideal)
- Materials with electric and magnetic properties that can match standard technologies (e.g. lithographic methods).
- Materials that handle potentially large temperature gradients (e.g. microprocessors and amplifiers get hot!) or design and implement thermal management solutions.
- Ability to place and electrically bond chip level integrated circuits (we still can’t print these)
- Ability to print at vastly different length scales (i.e. size matters a lot!).
Design Considerations for AM of High Frequency Electronic Systems

While still important structural properties are not as important as other design considerations for our applications...

Such as:

- Ability to print considerably different materials without registration errors (i.e. single multimaterial printer is ideal)
- Materials with electric and magnetic properties that can match standard technologies (e.g. lithographic methods).
- Materials that handle potentially large temperature gradients (e.g. microprocessors and amplifiers get hot!) or design and implement thermal management solutions.
- Ability to place and electrically bond chip level integrated circuits (we still can’t print these)
- Ability to print at vastly different length scales (i.e. size matters a lot!).
Design Considerations for AM of High Frequency Electronic Systems

While still important structural properties are not as important as other design considerations for our applications ...

Such as:

- Ability to print considerably different materials without registration errors (i.e. single multimaterial printer is ideal)
- Materials with electric and magnetic properties that can match standard technologies (e.g. lithographic methods).
- Materials that handle potentially large temperature gradients (e.g. microprocessors and amplifiers get hot!) or design and implement thermal management solutions.
- Ability to place and electrically bond chip level integrated circuits (we still can’t print these)
- Ability to print at vastly different length scales (i.e. size matters a lot!).
Primary Multimaterial AM System

- Quad deposition heads
- Material Agnostic via micro-dispensing print heads
- Prints viscosities from 1-1 million cp
- Volumetric dispense control down to 100 picoliters
- Line sizes ~25-500 μm
- Ability to print on conformal surfaces via integrated laser scanning
- Ability to print thermoplastics (FDM)
- Positional control down to 1μm
- Pick and place of active circuit components
Primary Multimaterial AM System
Material Challenges

- Finding suitable materials is one of the biggest challenges in moving this technology forward.

- For high frequency applications (>10 GHz) some of the challenges in AM compatible materials

 1. Electrical conductivities <10% of bulk metal properties.
 2. High temperature low-loss polymer substrates that can withstand soldering.
 3. High dielectric constant and magnetic materials.
 4. Long list of printable active materials: (a) temperature sensitive, (b) chemically sensing, (c) electrochromic, (d) phase changing, (d) fluorescent, (e) photovoltaic,
Material Development

Resistive Inks

- Carbon black powder
- Carbon nanotubes
- Polymer matrix

- Attractive EM loss properties
- Nice viscosity for AM printing
- Low cost
- No volatiles

Metallic Inks

- Silver flakes + Silver nano-particles
- No organic binder
- Potential for near bulk metallic properties
- Been used for printable RF transmission lines and antennas
- Adjustable viscosities
Material Development

Active Phase Changing Inks

Vanadium oxide (VO$_2$)

Resistivity (Ohms)

Time (seconds)

Under ambient light
The printed array of squares is largely transparent.

Under UV light illumination
The array of printed squares are fluorescent.

- Quantum dots + hydrophilic resin
- Design inks that adhere to a wide range of surfaces: Clothing/Fabrics, Leather, Metal, Plastics
- Potential use for anti-tampering applications.

Fluorescent Inks
Material Development

Chemiresistive Inks

![Images of chemiresistive inks and graph showing resistance over time for different gases.]
Material Development

Material Development: Custom Polymer Filaments

- Polymer powder
- Additives

Custom filaments

- Print using FDM

ThermoFisher Process 11 Twin Screw Polymer Extruder
Material Development

Material Development: Custom Polymer Filaments
Low Dielectric Constant Filaments ($\varepsilon_r < 2.0$)

Hollow glass microspheres within a Polyethylene Matrix

Hollow Glass Microspheres
within a Polyethylene Matrix

Relative Permittivity (ε_r)

Volume loading Hollow Glass Spheres (%)
Material Development: Hopper Fed System for Highly Loaded Materials

Diagram showing the components of the hopper fed system:
- Hopper for feeding powder mixtures
- Stepper motor
- Powder feeding mechanism
- Single screw extruder
- Extrusion barrel
- Cartridge heaters
- Nozzle heater
- nScrypt ceramic nozzle tips

Version 1.0
Process Monitoring and Control

- Most AM systems, including our nScrypt systems, are entirely open loop.

- There is a critical need for process monitoring and control features.

Our FDM head some Monday morning
Outline

Design of Radio Frequency Systems and Sensors for Multi-Material Additive Manufacturing

- Brief overview of what we are trying to do and why
- Discuss some of the major design challenges we face in this application area
- Illustrative example
Applications

Printed Antennas

Printed Sensors

Printed Pharmaceuticals

Spatially Graded Beam Formers

Printed High Frequency Electronics
Applications

Printed Antennas

Printed Sensors

Printed Pharmaceuticals

Printed High Frequency Electronics

Spatially Graded Beam Formers
Goal

Fabricate complex 3D geometries in which the electrical properties (e.g. dielectric constant) vary nearly arbitrarily in three dimensions

$$\varepsilon(x, y, z)$$
Illustrative Example: 3D Printed Graded Dielectrics

Application: Electronic Beam Steering

Radar Systems

Satellite Communications

5G Wireless Communications
Illustrative Example: 3D Printed Graded Dielectrics

Application: Electronic Beam Steering

Phased array technology
- All electronics
- Very flexible
- Narrow bandwidths
- Very expensive

Mechanically steered antenna
- Simple
- Heavy
- Large
- Susceptible to mechanical breakdowns
Illustrative Example:
3D Printed Graded Dielectrics

Another Approach: Passive Beam Steering using Luneburg Lens

\[
\epsilon(r) = 2 - \left(\frac{r}{R}\right)^2
\]
Illustrative Example: 3D Printed Graded Dielectrics

Application: Electronic Beam Steering
Another Approach: Passive Beam Steering

- Wide bandwidths
- Inexpensive materials
- Simultaneous multi-beams
- Relatively small and lightweight
- Hard to fabricate!
We explored approaches for designing and fabricating spatially graded structures in 3D using FDM.

- Many FDM polymers have very low material losses at high frequencies.
- FDM systems are extremely common and inexpensive.

$$\varepsilon(x, y, z)$$
How do we create graded properties?: Space Filling Curves

Illustrative Example:
3D Printed Graded Dielectrics

How do we create graded properties?: Space Filling Curves

Illustrative Example:
3D Printed Graded Dielectrics

Micro-CT scan of printed space filling curve

$A_{cross} = h(W - h) + \pi \left(\frac{h}{2}\right)^2$

Λ Λ

$VF = \frac{A_{cross} \cdot L_{tot}}{\Lambda^2 \cdot h}$

Λ Λ

$VF = \frac{\left(W - \left(1 - \frac{\pi}{4}\right)h\right) \cdot (N + 1)}{\Lambda}$

Volume fraction of printed material per unit cell
Illustrative Example:
3D Printed Graded Dielectrics

Material: Polycarbonate
Illustrative Example:
3D Printed Graded Dielectrics

Use of Space Filling Curves: Design process
Illustrative Example:
3D Printed Graded Dielectrics

Use of Space Filling Curves: Design process

2 mm
Illustrative Example:
3D Printed Graded Dielectrics

Luneburg Lens Beam Steering

Fabricated Luneburg Lens using 3D Printing

- 8-18 GHz
- 26-40 GHz
- 60-110 GHz
Illustrative Example:
3D Printed Graded Dielectrics

Luneburg Lens Beam Steering at 70 - 110 GHz
Illustrative Example:
3D Printed Graded Dielectrics

Luneburg Lens Beam Steering at 24 GHz

» Receiver: Luneburg lens focuses incoming signal into power detector via bowtie antenna
» Current receiver: only 3 feed antennas. Will scale up in next version
» Lens size: 64 mm diameter
Illustrative Example:
3D Printed Graded Dielectrics

Luneburg Lens Beam Steering

- 24.15 GHZ Source
- Luneburg Lens System
- Rotational Stage
Illustrative Example:
3D Printed Graded Dielectrics

Luneburg Lens Beam Steering

Screen Capture of Android Device

Testing Platform in Action
A PORTION OF THIS WORK WAS CARRIED OUT UNDER SBIR CONTRACT #W31P4Q-16-C-0110 IN COLLABORATION WITH U.S. ARMY AMRDEC

THE AUTHORS WOULD LIKE TO ACKNOWLEDGE FUNDING SUPPORT FOR A PORTION OF THIS WORK FROM THE OFFICE OF NAVAL RESEARCH.