3D-Painted Solid Oxide Fuel Cells: A New Approach to Functional Multi-Ceramic Device Fabrication

Nicholas R. Geisendorfer¹,³
Hongqian Wang¹; Zhan Gao, PhD¹*; Adam E. Jakus¹,³*, PhD Prof. Scott A. Barnett¹, PhD; Prof. Ramille N. Shah, PhD¹,²,³

Northwestern University

¹Materials Science and Engineering
²Transplant Surgery
³Simpson Querrey Institute for BioNanotechnology
*Former Affiliation

Evanston, IL
October 3rd, 2017
Let’s categorize “Additive Manufacturing” and “3D-Printing” (See ASTM F42)

ENERGY-BASED
- Laser Sintering (Powder Bed)
- Laser Melting (Powder Bed)
- Electron Beam Melting (Powder Bed)
- Stereolithography (Photo-cured Resin)

DEPOSITION-BASED
- Fused Deposition Modeling (Hololith Etralum)
- Inkjet Binding (Powder Bed)
- Direct Extrusion (Plast-O-Matic)
- Direct Ink Writing

Instrument Driven

Material Driven

Laser Metal Deposition

Originals Pioneered by 3D Systems
“TRADITIONAL” METAL AM

- **Energy-based**
 - Laser Sintering (Powder Bed)
 - Laser Melting (Powder Bed)
 - Laser Metal Deposition
 - Electron Beam Melting (Powder Bed)
 - Stereolithography (Monomer Bath) (not for metals)

Originally pioneered by 3D Systems

Instrument Driven

Primarily associated with metals

- Biomet

- High-power energy beam

- Powder-Bed

- Pratt and Whitney
DEPOSITION-BASED 3D-PRINTING

"Rapid Prototyping"

Primarily associated with thermoplastics
Where do ceramic materials fall?
The Shah Tissue Engineering and Additive Manufacturing Laboratory

Defining “3D-Printability” and creating and developing new, 3D-printable materials for any and all applications.
Science Translational Medicine, 2016.
(Cover)

Scientific Reports 2017.
Acta Astronautica. (In Review)
Shah TEAM Lab 3D Printable Ink Platforms

Hydrogel/Cell-Based Inks

“PEGX Bioinks”

- Aqueous-Based, Primarily Water Hydrophilic
- Multi-Mat. Compatible
- Can Encapsulate Live Cells (Bioprinting)

Particle-Laden Inks

“3D-Painting”

- Organic Solvent-Based
- Primarily Rigid Particles
- Multi-Mat. Compatible
- Can’t Encapsulate Live Cells

Well beyond biological and medical applications
3D-PAINTING: A COMPREHENSIVE, MATERIALS-CENTRIC APPROACH TO 3D-PRINTING & ADDITIVE MANUFACTURING

Not merely different colors... Completely different materials!

A selection of more than 300 distinct 3D-Inks developed by the Shah TEAM Lab
(...and can be mixed and modified ad infinitum)
Why “3D-Painting”: Let’s Take a Closer Look at Paint...

“3D-Paints” contain the same major components as household paints, but dry much quicker!
3D-Painting

- Room-temperature extrusion
- Deposition rates up to 150 mm/s*
- No powder beds or resin baths
- No Support materials required
- No curing or post-reactions to stabilize structures
- Objects can be handled immediately
- One to thousands of layers
- 100 µm to 2 mm** fiber diameter

* Maximum speed of our hardware, not material limited.
** Maximum diameter tested
3D-Paints are composed primarily of the functional particle/powder rather than of non-functional polymer.

Solidify via rapid evaporation of solvent upon extrusion.
A Selection of 70 vol.% Particle Inks

Inks do not settle-out over time

Long shelf-life (Printable for at least 24 months after synthesis)
No need to re-wet. Remain flexible for at least 4 years.
EFFICIENT AND SCALABLE SOLID OXIDE FUEL CELL FABRICATION VIA 3D-PAINTING

US Patent Application 15/212,534

“Efficient and Scalable Solid Oxide Fuel Cell Fabrication via Extrusion-based 3D-Printing of Liquid Inks” Manuscript in Preparation
Solid Oxide Fuel Cell Basics

\[\text{H}_2 \ (g) + \frac{1}{2} \text{O}_2 \ (g) \rightarrow \text{H}_2\text{O} \ (g) + e^- \] at high temperature
Traditional Processing and Limitations

Fuel cells aren't economically viable for widespread adoption...yet
Revisiting Additive Manufacturing of Ceramics:

ENERGY-BASED

Laser Sintering
(Powder Bed)

Laser Melting
(Powder Bed)

Electron Beam Melting
(Powder Bed)

Originally Pioneered by 3D Systems

Instrument Driven

Stereolithography
(Resin-based)

DEPOSITION-BASED

Fused Deposition Modeling
(Heat-assisted Extrusion)

Inkjet Binding
(Powder-Based)

Direct Extrusion
(Presented)

Direct Ink Writing
Materials Driven

Laser Metal Deposition

Originally Pioneered by Stratasys

Materials (now part of 3D Systems)
Background: Attempts to Additively Manufacture SOFCs

Binder Jetting

- Little microstructural control
- Geometry Limitations

Inkjet Binding

- Only demonstrated electrolyte materials
- Size and Geometry Limitations

“Original and Proprietary” (Inkjet Binding)

- Multi-step firing procedure
- Size and Geometry Limitations

Require a versatile and scalable process to fabricate *monolithic* multi-ceramic fuel cell stacks without the need for labor-intensive assembly and non-functional, structural components...
Apply 3D-Painting to SOFC manufacturing!
No drying time required.

Objects can be handled immediately after being created.
Not a “push-button” technique, requires controlling >15 independent parameters
(i.e. applied pressure, linear speed, needle offset etc.)
Thermal Processing: 1250°C for 4 hrs.

3D-printed architecture maintained and desired microstructure achieved!
Electrochemical Measurements (800°C)

Current-Voltage Measurement

V$_{OC}$ = 0.283 V

> 1 V desired

Impedance Spectroscopy

R$_{Ohmic}$ \sim 5 Ω

< 1 Ω desired

Relatively poor performance… for now.
Combine 3D-Printed and Tape-Cast Layers to Improve Electrochemical Performance

Good performance, but more cumbersome fabrication and assembly...not scalable!
Compatible Techniques: Dip-Coating

Provides additional versatility in fabrication!
Ink system can be utilized to create thin films as well as 3D-structures
Shrinkage manageable by tailoring ink composition.
Ink versatility provides many ‘knobs to turn’ for control.
Where are we going?

The Present

The FUTURE

Dip Coating

3D-Painting

Ink Casting

After Firing

LSM (cathode)

YSZ (electrolyte)

NIO + YSZ (anode)
Prof. Ramille N. Shah, PhD
Adam Jakus, PhD
Christoph Kenel, Dr. sc.
Xin Li, PhD
Shannon Taylor
Phillip Lewis
Jimmy Su
Emma Gargus
Kelly Parker

Prof. Scott A. Barnett, PhD
Hongqian Wang
Zhan Gao, PhD

This work is supported by a NASA Space Technology Research Fellowship