Recent Developments in Thermoplastic Processing & Part Mfg.
Michael Buck

SME Advanced Thermoplastic Composites Seminar
Knoxville, TN ♦ April 6th, 2017

www.barrday.com
Why Thermoplastics?

- Extremely light, tough, durable & moldable
- Two types of plastics:
 - Thermoplastics
 - Remeltable/remoldable
 - Thermosets
 - Chemical reaction, cannot be remelted/reprocessed

Plastics have revolutionized the world
- Used in all walks of life, from clothing to household goods, to transportation, etc.
- Over 299 million tons produced worldwide in 2013*

* www.worldwatch.org
Why Thermoplastics?

Source: Plastics Industry Producers’ Statistics Group, April 2016
Why Thermoplastic Composites?

Thermoplastic Composites

- Superior mechanical / physical properties
 - Excellent toughness / impact resistance
 - Superior wear / abrasion resistance
 - Very low moisture absorption
 - Excellent hot / wet properties
 - Outstanding corrosion / solvent resistance
 - Outstanding flame / smoke / toxicity
 - Environmentally friendly / low volatiles

Thermoplastic Processing

- Reduction in per part costs:
 - Rapid processing possible → no cure
 - Net shape processing → no bleed
 - Lower scrap → recyclable / reprocessable
 - No out of date → infinite shelf / pot life
 - Multi step manufacturing → thermoform / remold
 - Thick part processing → no exotherm
 - Easier bonding → welding / fusion
 - Damage repair → reconsolidates
Relative Toughness/Impact Properties

- CAI: PEKK/C = ~325 MPa, Epoxy/C = ~200 MPa
- G1C: PEKK/C = ~1,400 J/m², Epoxy/C = ~300 J/m²
The Nano-Technology of the 1980’s

Product format
- Difficult to prepreg / RTM
 - Viscous (Pushing taffy through cheesecloth)
- Limited government (military) support (1990’s)

Limited processing technologies/know-how
- High temperature processing
- New capital investment required
- Small/niche parts makers

F-22 as a show case for thermoplastics
- Processing issues & costs limited applications
- Stunted growth in aerospace
Thermoplastic Composites Now

Processing technologies becoming more robust
- Base of qualified processors is growing
 - ATL/AFP, Continuous Compression Molding (CCM), Composite Over-Molding, Stamp/Thermo Forming, Oven Consolidation, Pultrusion, etc.
- Now being tested and qualified in a variety of high performance applications

Growth in a wide variety of markets
- Aerospace, defense, industrial, automotive, oil & gas, medical, et. al.
- Europe historically ahead of US, but is this changing?
Advancements in Processing

- Get out of the autoclave!
- Fabricate high quality parts rapidly
- Processes:
 - Thermo / Stamp Forming
 - Continuous Compression Molding (CCM)
 - Composite Overmolding
 - Pultrusion
 - Automated Fiber Placement / Tape Laying (AFP / ATL)
 - Discontinuous Long Fiber Compression Molding (DLF)
Thermo / Stamp Forming

- Great for shaped / molded parts
- High volume capability
 - Rapid processing (i.e., < 2 minutes)
- High speed automated lay-up
- Wide variety of polymer / fiber options
- Wide range of thicknesses / sizes

Automated lay up

Low porosity consolidation

Press form complex shapes

Courtesy Tri-Mack Plastics Mfg.
Thermo / Stamp Forming Examples

Engine mounting bracket
- Thick composite part
- Fatigue resistance
- Temperature resistance

Courtesy Olimunllum
Thermo / Stamp Forming Examples

- Formed box and brackets
 - Tailored lay ups
 - Short cycle times
 - Finish milling / machining
 - Large / fully assembled parts

Courtesy Tri-Mack Plastics Mfg.
Thermo / Stamp Forming Examples

- Deep draw
- Complex geometries
- High volume
- Rapid processing

Courtesy Oribi Mfg.
Continuous Compression Molding (CCM)

- Flat laminates or shapes – continuous lengths
- Prepreg tapes, fabrics, mats
- Speeds up to 80 m/hr
- Low porosity
- Widths up to 50 in (1.27 m)

Courtesy xperion GmbH
CCM Examples

- Structural & semi-structural parts
- In production – aerospace, industrial, et al.
- Wide variety of polymer/fiber combinations

Courtesy xperion GmbH & Cutting Dynamics
Composite Overmolding

Combine properties of continuous fiber composites with flexibility and cost savings of injection molding
– Tailored / “localized” reinforcement
– Complex shapes / geometries
– Automated processing
– High speed molding
– Create complete assembly (inserts, fasteners, etc.)

Courtesy Tri-Mack Plastics Mfg.
Overmolding Examples

TP UD & injection mold – process and examples

In-mold forming & assembly

Steel inserts

UD Thermoplastic Composite

Injection Molding

Courtesy Tri-Mack Plastics Mfg.
Thermoplastic Pultrusion

- Continuous lengths
- Geometric shapes & profiles available
 - Consistent geometries
- Low cost process
 - Low labor costs

Courtesy Hutchinson Aerospace
Thermoplastic Pultrusion

Thermoplastic Composite Profiles

TPC stringers for primary structure

Overmolded TPC profiles for secondary structure

Courtesy Hutchinson Aerospace
AFP / ATL Processing

- Robotically controlled – automated laydown
 – Ability to orient fiber directions automatically
- In situ processing or combined with low cost consolidation techniques
- Wide range of part sizes and geometries

Courtesy Automated Dynamics
AFP / ATL Examples

- Cobonded, skin stiffened aerospace structures
 - No adhesives
 - No fasteners

Courtesy Automated Dynamics
AFP / ATL Examples

Thermoplastic Composite Pipe

Courtesy Airborne Oil & Gas
AFP / ATL Examples

Representative fuselage A350 : 6m x 2.2 m x 22 ply
Panel lay up : 16 bobbins x ¼ in wide TP UD

Courtesy Coriolis Composites SAS
Discontinuous fibers
- Long fiber, high fiber volume, random orientation

Semi-structural parts

Great for complex shapes / geometries (3-D)

Near-net mold
- Low scrap, minimal secondary operations

Courtesy Greene-Tweed & Co.
Mold in features

- Fasteners
- Inserts / bushings
- Bosses
- Ribs

Courtesy Greene-Tweed & Co.
In Conclusion

TPCs beginning to fulfill their promise!
- The future has never been brighter

Parts processing technologies leading the way
- High volume low cost processing progressing rapidly
- Complex shapes / contours being developed
- Expanding financially stronger supply chain

Can thermoplastics eventually overtake thermosets as the matrix of choice for high performance composites?
SME Thermoplastics Seminar

Special thanks to the companies who contributed to this presentation:

- Hutchinson
- Tri-Mack
- Coriolis Composites
- Automated Dynamics
- Greene Tweed
- Airborne Oil & Gas
- CDI
- Oribi Manufacturing
- Xperion